Banach spaces of homogeneous polynomials without the approximation property

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous Banach spaces with respect to Jacobi polynomials

Homogeneous Banach spaces determined by the Jacobi translation operator are introduced and studied. Based on this translation operator a Jacobi differential operator is analyzed. Approximation procedures in the homogeneous Banach spaces are presented.

متن کامل

Approximation by homogeneous polynomials

A new, elementary proof is given for the fact that on a centrally symmetric convex curve on the plane every continuous even function can be uniformly approximated by homogeneous polynomials. The theorem has been proven before by Benko and Kroó, and independently by Varjú using the theory of weighted potentials. In higher dimension the new method recaptures a theorem of Kroó and Szabados, which ...

متن کامل

The Lidskii Trace Property and the Nest Approximation Property in Banach Spaces

For a Banach space X, the Lidskii trace property is equivalent to the nest approximation property; that is, for every nuclear operator on X that has summable eigenvalues, the trace of the operator is equal to the sum of the eigenvalues if and only if for every nest N of closed subspaces of X, there is a net of finite rank operators on X, each of which leaves invariant all subspaces in N , that ...

متن کامل

The Banach-saks Property of the Banach Product Spaces

In this paper we first take a detail survey of the study of the Banach-Saks property of Banach spaces and then show the Banach-Saks property of the product spaces generated by a finite number of Banach spaces having the Banach-Saks property. A more general inequality for integrals of a class of composite functions is also given by using this property.

متن کامل

The Complete Continuity Property in Banach Spaces

Let X be a complex Banach space. We show that the following are equivalent: (i) X has the complete continuity property, (ii) for every (or equivalently for some) 1 < p < ∞, for f ∈ h(D, X) and rn ↑ 1, the sequence frn is p-Pettis-Cauchy, where frn is defined by frn(t) = f(rne ) for t ∈ [0, 2π], (iii) for every (or equivalently for some) 1 < p < ∞, for every μ ∈ V (X), the bounded linear operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2015

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-015-0181-6